
August 14, 2021

jBoxes Reference Guide

This reference guide describes the jBoxes system in detail. Although it can be read from
beginning to end, it is intended mostly as a summary and at some times enhancement of
the information given in The jBoxes Booklet.

Purpose of jBoxes

The purpose of the jBoxes system is to provide a comfortable environment in which to
learn about programming. This is accomplished by making everything that happens in
the system visible. This visibility lets you learn how the system works by observing it
in action. Then, once you understand how the system works, when you create your own
programs, you can observe how they behave, helping you to correct your errors.

Fundamental Constructs in jBoxes

In addition to being a visible system, jBoxes is intended to be useful for teaching beginning
computer science because it uses relatively few constructs.

This section describes, in fairly high level terms, the basic concepts and terms in the
jBoxes system. This section is very terse, intending to provide a high level perspective on
the system and trying to provide insight into the overall scheme, since you can observe the
details by using the system.

The Diagram Metaphor

The jBoxes system is built on the metaphor of a diagram. To create programs, you add
your own pieces to the original diagram. When a program is executing, the system reads
parts of the diagram as instructions and modifies the diagram as it works to perform the
instructions.

The term universe is used interchangeably with the term “diagram.”

Everything is a Box or a String or a Decoration

The diagram is built entirely from boxes, strings, and decorations.

A box is a rectangular region that contains, depending on its kind, various parts, together
with some decoration. A part is either a sequence of boxes or a string.

A fundamental construct for boxes is nesting, in which a box contains a list of inner boxes,
each of which may have its own inner list, and so on.

Each box has a specific kind. Its kind determines what string parts it has, what inner
boxes it has, how these inner boxes arrange themselves, what decorations it has, how it
can be edited, and how it behaves during execution.

The inner boxes are always in sequential order, from first to last, with each box having a
previous box and a next box in that order (except for the first and last boxes). The inner
boxes are always arranged from left to right and top to bottom in this order.

A string is a sequence of 0 or more symbols. A symbol is any of the usual symbols with
Unicodes from 32 to 126, together with some additional symbols that are used by the

jBoxes Reference Guide Page 1

August 14, 2021

system, including several marks. These marks are used solely to mark the beginning point
of a string, so that it shows up even if there are no other symbols in the string.

The symbols in a string are organized in a sequential order, similar to the ordering of
inner boxes in a box. The symbols in a string display either left to right on a line, or in a
standard left to right, top to bottom style as in usual text.

Strings only occur as parts of boxes. The possible parts are the name of a box, the
documentation for a box, the type of a box, and the value of a box. The kind of a box
determines exactly which string parts it has.

Decorations are additional features in the visual display of a box that help to indicate
which kind of box it is and how it behaves. Decorations serve no other purpose and could
be omitted entirely without affecting the behavior of the system in any way. Decorations
include arrows indicating flow of data or control and little drawings specific to a kind of
box. Technically, the rectangular border of a box is part of its decoration.

Viewing

When jBoxes is running, one or more viewers are operating. A viewer is a camera, aimed
at some rectangular region of the diagram, showing that portion of the diagram in some
rectangular area of the screen.

Which combination of viewers is operating may be selected interactively by the user, using
F8 and F7 as detailed in the Summary Sheets.

A viewer has a border with a color that indicates the state of the border, as follows.

Red: fully interactive

Yellow: interactive while paused during execution

Green: execution is proceeding with no interaction possible

Gray: execution is waiting for input from the keyboard

Blue: display only, no interaction possible

When doing regular viewing, just one viewer uses the whole window. When doing split
viewing, the left viewer provides regular viewing while the upper right viewer remains
fixed over the console box, showing its contents whether or not they are visible in the main
viewer, and the lower right viewer similarly remains fixed over the ports box.

The region in the universe that a viewer is displaying may be changed in various ways, as
described in the Summary Sheets. The “camera” may be moved left, right, up, or down,
and the size of the region may be increased or decreased.

The rectangle in the window that a viewer is using to display its image is fixed, depending
only on the size of the window.

jBoxes Reference Guide Page 2

August 14, 2021

Focus

When an interactive viewer is displaying, it has a single box or symbol that is referred to
as the focus. The focus is the box or symbol that responds to interactive commands. It is
like the “cursor” in a typical word processing program.

The focus may be changed from one box or symbol to another in various ways, as described
in the Summary Sheets.

Aspects

A box may have, depending on its kind, a number of inner boxes and string parts, so the
system allows the user to control how much of the detail, and which details, are shown for
a given box at a given time. The particular combination of details being shown is known
as the aspect the box is using or showing. Depending on the kind of box, some aspects
may not be possible, simply because they make no sense.

Aspects are useful for avoiding display of details that the user does not want to see, and
for suppressing details during execution.

The user may interactively change the aspect of the focus box in various ways, as detailed
in the Summary Sheets. When the aspect of a box is changed, it changes to the next
aspect that box has in a standard order. So, to get to a desired aspect, the user may need
to change aspects several times.

Here are the possible aspects for a box:

Full: The inner boxes are shown, together with all string parts except for the documen-
tation string, if any. String marks are filled triangles. Displays using black. Used when
detailed view of the box is desired.

Abstract: Just the name part of the box is shown. The mark for the name string is a
hollow triangle. Displays using blue. Used when just the existence of the box, with no
further information, is desired. No execution detail is shown.

Documentation: Just the documentation string is shown. The mark for this string is a
little page image. Displays using green. Used when a description of the box is desired. No
execution detail is shown.

Value: The value string and the type string of the box are shown. Displays using red.
Generated automatically for some boxes during execution, not typically changed to by the
user.

Navigation

Navigation refers to moving the focus from one box or symbol to another. This may be
done either through use of the keyboard or through the mouse.

Mouse navigation is quite simple. If you left-click on a box or symbol, it becomes the focus.
Note that the concept of “on” a box means that the mouse cursor is inside the border of
the box but not inside any of its inner boxes or string parts. If you right-click anywhere
inside a box that is not on one of its inner boxes, then the aspect of the box is changed.

jBoxes Reference Guide Page 3

August 14, 2021

Keystroke navigation is also simple, but unlike navigation via the mouse, the keys move
the focus according to the nesting structure of the universe. Keys can be used, as detailed
in the Summary Sheets, to move the focus to an inner box, to an outer box, to the next
box in a list of inner boxes, and to the previous box in a list of inner boxes. They can also
be used to move part to part within a box, where the parts can include the inner list of
boxes and various string parts.

Destruction

The focus box or symbol may be destroyed in various ways, as detailed in the Summary
Sheets. Note that it may not be possible to destroy a given box or symbol, depending on
its kind or context. For example, a mark can never be destroyed, unless the entire box it
belongs to is destroyed.

When a box or symbol is destroyed, the focus moves automatically to the next box or
symbol after it, or somewhere else if there is no box or symbol after it. For example, when
the last actual symbol in a string is destroyed, the focus moves to the symbol preceding
it, which may be the mark for the string.

Creation

A new box of a desired kind or symbol may be created by hitting the appropriate key, if
the context of the focus box is correct.

The details of the context in which a certain kind of box can be created are covered in the
next section. For now, it is enough to observe that the space key will create a box in a
certain context if any kind of box is allowed. If only one kind of box is allowed, it will be
created by pressing the space key, and if several kinds are possible, an empty box will be
created.

Once an empty box has been created, either interactively by the user or as part of a larger
kind of box, it can later be converted, when it is the focus, by pressing an appropriate key.

Symbols can usually be created and inserted into a string, except that names of boxes can
only contain letters, digits, and the underscore symbol.

The Categories of Boxes

The whole purpose of the jBoxes system is to provide an environment in which programs
can be created and executed. Every box and string in the universe is involved with this
creation and execution of programs in some way.

Many kinds of boxes fall into the category of container boxes. Their purpose is to organize
other kinds of boxes, providing the overall structure within which programs are created
and executed.

All other kinds of boxes are executable, in the sense that during the execution process,
they can receive a request to execute themselves and then do so, either performing some
action, in which case they are categorized as action boxes, or evaluating themselves to
produce a string, in which case they are categorized as value boxes.

jBoxes Reference Guide Page 4

August 14, 2021

Controlling and Observing Execution

Execution begins when the user puts the focus on an appropriate kind of box and hits one
of the keys, as detailed in the Summary Sheets, that can send an execution request to the
focus box. After that, execution proceeds on its own, with various boxes being sent an
execution request, which causes them in turn to send execution requests to other boxes
as they perform their execution behavior. When asked to execute itself, a typical box will
send out some execution requests to other boxes, wait for them to finish, finish its own
execution behavior, and send a final execution request to some box that needs to execute
next.

The amount of visual detail that is provided depends on how the user runs the execution
process. By using different viewers, by changing aspects, by using breakboxes, and so on,
as detailed in the Summary Sheets, the user can control how often the execution process
pauses and waits for another keystroke from the user before continuing the execution
process.

The Kinds of Boxes

Apart from the fundamental constructs just described, and the details of interaction pro-
vided in the Summary Sheets, most of the rest of the information about the jBoxes system
consists of descriptions of the properties of each kind of box.

The following lengthy list shows, for each kind of box, its category, its purpose, its appear-
ance (including decoration, arrangement of inner boxes, and pictures), its string parts, the
kinds of boxes in its inner list, its execution behavior, and any special behaviors.

This tour of all the kinds of boxes is organized in a high level to low level way, with all
the boxes at a certain level described before describing their inners in detail. In an outline
sense, this is like handling I, II, III, and so on, before going back and covering I.A, I.B, and
so on. This is known as a breadth first order. One inevitable consequence of this approach
is that higher level boxes will be described in terms of their inner boxes that haven’t been
described yet. For example, when the universe box is described, it will be described as
holding certain kinds of boxes, which will only later be described themselves.

jBoxes Reference Guide Page 5

August 14, 2021

Universe box category: container

Sample image: Appearance: Is outermost box, is surrounded by dark
grey nothingness, has light gray background color.

Creation: Made by the
system when start a new
universe.

Purpose: Contains everything in the universe.

Parts: Holds a horizon-
tal list of 0 or more class
boxes, followed by a fixed
vertical list consisting of
the stack box, the heap
box, the static data box,
the console box, and the
ports box, followed by a
horizontal list of 0 or more
demo boxes.

Execution behavior: Doesn’t execute

jBoxes Reference Guide Page 6

August 14, 2021

Class box category: container

Sample image: Appearance: Has four distinctively named inner boxes
arranged vertically, has bluish background color.

Creation: Hit space when
focus is on universe box’s
mark or on a class box.

Purpose: Provides a blueprint for building instances of
the class, which are also loosely known as objects. The
type of the object is the name of the class. In addition
to specifying how to build objects of its type, a class box
also provides related support data and programs for these
objects.

Parts: Has a name and
fixed inner list consisting
of a class data box, a class
methods box, an instance
data box, and an instance
methods box.

Execution behavior: When execution begins, a copy of
this box’s class data box is made, with its name the same
as this box’s, and is put in the static data box.

Stack box category: container

Sample image: Appearance: Has name “stack” in upper left corner, 0
or more inner boxes arranged horizontally, has reddish
background color.

Creation: Fixed inner box
for universe box.

Purpose: Holds copies of method boxes that are in pro-
cess of executing.

Parts: Has name and in-
ner list.

Execution behavior: Doesn’t execute.

Heap box category: container

Sample image: Appearance: Has name “heap” in upper left corner, has
0 or more inner boxes arranged horizontally, has greenish
background color.

Creation: Made by sys-
tem.

Purpose: Holds copies of instance data boxes for objects
that have been created during execution.

Parts: Has name and in-
ner list.

Execution behavior: Doesn’t execute.

jBoxes Reference Guide Page 7

August 14, 2021

Static Data box category: container

Sample image: Appearance: Has name “static data” in upper left cor-
ner, has 0 or more inner boxes arranged horizontally, has
yellowish background color.

Creation: Made by sys-
tem.

Purpose: Holds copies of class data boxes for class boxes
in the universe.

Parts: Has name and in-
ner list.

Execution behavior: Doesn’t execute.

Console box category: container

Sample image: Appearance: Displays just symbols and has a green cur-
sor.

Creation: Made by sys-
tem.

Purpose: Displays output information produced by the
program during execution.

Parts: Has just a single
string part holding the
displayed output infor-
mation. This string dis-
plays using the multiple
line style, with 25 rows and
40 columns allowed.

Execution behavior: When various system methods exe-
cute, they change the displayed information or move the
cursor or toggle display of the cursor on/off.

Note: with split viewing, full aspect of this box is shown in the upper right
viewer, even if it is using its abstract aspect.

jBoxes Reference Guide Page 8

August 14, 2021

Ports box category: container

Sample image: Appearance: Has name “ports” in upper left corner,
shows four inner port boxes.

Creation: Made by sys-
tem.

Purpose: Holds the four port boxes.

Parts: Has a name and
fixed inner list of four port
boxes.

Execution behavior: Doesn’t execute.

With split viewing, full aspect of this box is shown in the lower right viewer, even
if it is using its abstract aspect.

Demo box category: its own special “demo” category

Sample image: Appearance: Appears below the ports box, name always
starts with “Demo,” always shows abstract aspect.

Creation: Can only be
made by authorized user.

Purpose: Contains an intermingled sequence of notes
and keys to play back for a demonstration to the user.

Parts: Has a name and
inner list. Only authorized
user will ever see the inner
list.

Execution behavior: Doesn’t execute (but does “run”).

Special kind of “meta level” box. Has inner boxes of kinds that a regular, unau-
thorized user need not be concerned with.

Class data box category: container

Sample image: Appearance: Has name “class data” in upper left corner.

Creation: Fixed part of
its class box.

Purpose: Holds 0 or more data boxes that hold informa-
tion used by the entire class, rather than just one particu-
lar instance of the class.

Parts: Has a name and
inner list.

Execution behavior: When execution begins, a copy
of this box is put in the static data box, with the name
changed to be the name of the class box it belongs to.

jBoxes Reference Guide Page 9

August 14, 2021

Class methods box category: container

Sample image: Appearance: Has name “class methods” in upper left
corner.

Creation: Fixed part of
its class box.

Purpose: Holds 0 or more method boxes that provide
operations performed by the class rather than an in-
stance.

Parts: Has a name and
inner list.

Execution behavior: Doesn’t execute.

Instance data box category: container

Sample image: Appearance: Has name “instance data” in upper left
corner.

Creation: Fixed part of
its class box.

Purpose: Holds 0 or more data boxes that hold informa-
tion used by a single instance.

Parts: Has a name and
inner list.

Execution behavior: During execution, when an instance
of this box’s class is created, a copy of this box is put in
the heap box.

Instance methods box category: container

Sample image: Appearance: Has name “instance methods” in upper left
corner.

Creation: Fixed part of
its class box.

Purpose: Holds 0 or more method boxes that provide
operations performed by an instance.

Parts: Has a name and
inner list.

Execution behavior: Doesn’t execute.

jBoxes Reference Guide Page 10

August 14, 2021

Data box category: container

Sample image: Appearance: Has just three string parts, no inner boxes.

Creation: Hit space when
focus is on the mark or
a data box inside a class
data box, an instance data
box, an inputs box, or a
locals box. Shortcut allows
hitting space when focus
is on the value string of
many data boxes (depends
on whether the type allows
a space symbol to be in
the value string).

Purpose: Provides for storage and retrieval of data dur-
ing program execution by referring to the data box’s
name. Protects against storing an incorrect type of data.

Parts: Has a name string
in the upper left corner,
a type string in the upper
right corner, and a value
string on the bottom row.

Execution behavior: Is the target and source, respec-
tively, for information storage and retrieval during exe-
cution, but does not itself execute. If an execution step
attempts to store a value string of a different type than
the data box has in its upper right corner, an execution
error occurs.

Note: data boxes can occur in several different kinds of container boxes, including
in copies of instance data boxes in the heap box and in copies of class data boxes
in the static data box, both of which are created during execution.

The type string should be either the name of a class box or one of the primitive
data types listed in the Summary Sheets.

jBoxes Reference Guide Page 11

August 14, 2021

Method box category: container

Sample image: Appearance: Has four fixed inner boxes.

Creation: Hit space when
focus is on the mark or
a method box inside a
class methods box or an
instance methods box.

Purpose: Provides the basic unit of execution, in the
sense that all execution proceeds through calls to method
boxes. It receives inputs, performs operations, and possi-
bly returns a value.

Parts: Has a name string
and four fixed inner boxes.
The first three are named
“inputs,” “output,” and
“locals,” and the fourth,
referred to as the “instruc-
tions box,” is actually a
sequence box.

Execution behavior: When a method box is called by a
call box, a copy of it is made. If the method box belongs
to a class methods box, then the name of the class is in-
serted in a special extra string part in the upper right
corner. If the method box belongs to an instance meth-
ods box, then the reference number of the object that was
called upon to perform the method is put in the upper
right corner. Then, the copy method box is inserted in
the stack box at the far left. The call box provides zero
or more arguments strings which are inserted, in order, in
the data boxes inside the method box’s inputs box. The
types of the arguments must match the types of the data
boxes, except that either int or float types strings may
be stored in a float data box.

Then, the instructions box of the method box copy is ex-
ecuted. When this execution is complete, a value string
may be returned through the output box of the method
box, and execution continues after the call box that called
this method box.

Note: the instructions in a method box copy can refer to data boxes in various
places, depending on whether the method box is a class method box or an in-
stance method box, as follows. If it is a method box inside a class methods box,
then it can use data boxes in its own inputs box, its own locals box, and the class
data box copy in the static data box. If it is a method box inside an instance
methods box, it can in addition use data boxes in the copy of the instance data
box in the heap box.

jBoxes Reference Guide Page 12

August 14, 2021

Sequence box category: action

Sample image: Appearance: Has a downward-pointing triangular mark
at its top edge. Arranges its inners vertically with decora-
tion arrows pointing from one to the next.

Creation: Press s in a
context where an action
box is expected.

Purpose: Holds a sequence of action boxes.

Parts: Has zero or more
inner boxes and no string
parts. In particular, it has
no name, hence has no ab-
stract aspect.

Execution behavior: Executes by having each of its in-
ners execute, from top to bottom.

Note: the “instructions box” of every method box is actually a sequence box.

Java box category: action, value

Sample image: Appearance: Its abstract aspect has a “J” in a box as its
mark and arranges the string in a multi-line style. Its full
aspect has a fixed inner list consisting of one box.

Creation: Press j in any
context where an action
box or a value box is ex-
pected.

Purpose: Allows use of Java-like code, in the name
string, which is then automatically translated into the
corresponding box which becomes the single inner box of
the java box.

Parts: The name string
is used to hold the Java-
like code. The inner list
consists of just the single
box that starts out as an
empty box and is then con-
verted to the desired box
when the name string is
translated.

Execution behavior: When it executes, if it has not al-
ready translated its name string, it does so. The single
inner box is then executed.

Note: the rules for the “java-like code” are quite elaborate and are not detailed
in this reference guide because they can be found in any text about Java. The
differences between true Java code and the code in a java box are detailed later in
this reference guide.

The category of a java box can be either action or value, depending on the con-
text in which it appears.

jBoxes Reference Guide Page 13

August 14, 2021

Empty box category: action, value

Sample image: Appearance: Has a 3D perspective drawing of an empty
box.

Creation: Press space in
a context where an action
or a value box can be cre-
ated.

Purpose: Is used as a placeholder. When certain kinds
of boxes are created, they contain, in their inner list,
empty boxes which need to be converted to specific kinds
of boxes.

Parts: Has no string parts
and no inner boxes.

Execution behavior: When an empty box is executed
in a context where an action is expected, it executes by
doing nothing. In a context where a value is expected, it
is an error for an empty box to be executed.

Branch box category: action

Sample image: Appearance: Has a downward-pointing triangular mark
like the sequence box, but arranges its inner boxes in ver-
tical pairs (except for the last one), with the pairs ar-
ranged horizontally. Decorative arrows leave each box
in the top row both from the bottom downward and from
the right edge rightward.

Creation: Press b in a
context where an action
box is expected.

Purpose: Allows for conditional execution, where exactly
one of the action boxes in the lower row is executed, de-
pending on the values produced by the value boxes in the
upper row.

Parts: Has inner list of
one or more boxes.

Execution behavior: Each of the value boxes in the up-
per row is evaluated, in left-to-right order. If a value of
true is obtained, execution flows to the action box below.
If a value of false is obtained, execution flows to the
value box to the right. When one lower row action box
is executed, the branch box execution is done. If none of
the value boxes produce a value of true, then the last ac-
tion box on the lower row is executed.

Note: when the focus is inside a branch box, on the mark or on an inner box
other than the last one, press space to make a vertical pair of empty boxes,
which can then be converted to the value box with a question and the corre-
sponding action box. When either of a vertical pair is destroyed, the other one
is, too.

jBoxes Reference Guide Page 14

August 14, 2021

While loop box category: action

Sample image: Appearance: Has two inner boxes arranged vertically
with decorative arrows indicating how execution flows—
the top inner box has the “exit arrow” leaving to its
right, while the bottom inner box has the “go back up
and do it again” arrow leaving from its bottom edge.

Creation: Press w in a
context where an action
box is expected.

Purpose: Allows for repeated execution of its second in-
ner box, with the question of whether to execute it again
before it has been done the first time.

Parts: Has two fixed in-
ner boxes.

Execution behavior: The first inner box executes to pro-
duce a boolean value. If the value is false, execution
flows to the right and execution of the while loop box is
complete. If the value is true, execution flows down, the
second inner box is executed, and then execution flows
back up to the first inner, to repeat the entire process.

Do loop box category: action

Sample image: Appearance: Has two inner boxes arranged vertically
with decorative arrows indicating how execution flows—
the bottom inner box has the “exit arrow” leaving to its
right, and also has the “go back up and do it again” ar-
row leaving from its bottom edge.

Creation: Press d in a
context where an action
box is expected.

Purpose: Allows for repeated execution of its first inner
box, with the question of whether to execute it again af-
ter it has been done at least once.

Parts: Has two fixed in-
ner boxes.

Execution behavior: The first inner box executes and
then execution flows down to the second inner box. The
second inner executes to produce a boolean value. If the
value is false, execution flows to the right and execution
of the do loop box is complete. If the value is true, execu-
tion flows back up to the first inner and the entire process
is repeated.

jBoxes Reference Guide Page 15

August 14, 2021

For loop box category: action

Sample image: Appearance: Has four inner boxes arranged vertically
with decorative arrows indicating how execution flows—
the second inner box has the “exit arrow” leaving to its
right, while the bottom inner box has the “go back up
and do it again” arrow leaving from its bottom edge.

Creation: Press f in a
context where an action
box is expected.

Purpose: Allows for repeated execution of its third inner
box, with the question of whether to execute it again be-
fore it has been done the first time. Is just a while loop
box with two extra boxes included for convenience (the
first and fourth).

Parts: Has four fixed in-
ner boxes.

Execution behavior: The first inner box executes one
time only. Then the second inner box executes to produce
a boolean value. If the value is false, execution flows to
the right and execution of the for loop box is complete.
If the value is true, execution flows down, and the third
inner box is executed. Then the fourth inner box is exe-
cuted, and execution flows back up to the second inner, to
repeat the entire process (except for execution of the first
inner box).

Identifier box category: action

Sample image: Appearance: Has just one string with right-pointing tri-
angular mark.

Creation: Press i in any
context where a value is
expected.

Purpose: Refers to a data box by name.

Parts: Has just a name
string.

Execution behavior: Searches all the data boxes that
are accessible from the context where it is executed until
one with the matching name is found. Then it makes a
copy of the value string in that data box to be its value,
or uses the data box as the target for storage of a value.
Is an execution error if no data box with the same name
is found.

Note: the “accessible” data boxes depend on the method box in which the identi-
fier box occurs. See the listing for the method box for details.

jBoxes Reference Guide Page 16

August 14, 2021

Assignment box category: action

Sample image: Appearance: Has two inner boxes with a string part be-
tween them, and a decorative arrow from the second back
to the first indicating data flow.

Creation: Press a in a
context where an action is
expected.

Purpose: Allows for storage of a value into a data box.

Parts: Has two fixed in-
ner boxes and a string
part.

Execution behavior: The first inner box executes to de-
termine a data box in which to store a value. Then the
second inner box executes to produce a value. Finally, if
the string part is just =, the value is simply stored in the
data box. If the = symbol is preceded by one of the five
arithmetic operators, then the current value of the data
box is combined with the value of the second inner, using
the specified operator, and the resulting value is stored in
the data box.

(Binary) operation box category: value

Sample image: Appearance: Has a string part between two inner boxes,
with no decorations.

Creation: Press o (for
“operation”) in a context
where a value is expected.

Purpose: Performs a specified binary operation.

Parts: Has two fixed in-
ner boxes and a string
part.

Execution behavior: The first inner box executes to pro-
duce a value. Then the second inner box executes to pro-
duce a value. Finally these two values are combined, us-
ing the binary operation given in the string part, and the
value of this box becomes the resulting value.

Note: the possible binary operations include arithmetic operations such as +, re-
lational operations such as <, and logical operations such as & (for “and”). They
are all listed in the Summary Sheets.

jBoxes Reference Guide Page 17

August 14, 2021

Unary operation box category: value

Sample image: Appearance: Has a string part followed by an inner box.

Creation: Press u in a
context where a value is
expected.

Purpose: Performs a specified unary operation.

Parts: Has one fixed inner
box and a string part.

Execution behavior: The inner box executes to produce
a value. Then the value of the unary operation box is ob-
tained by applying the unary operation specified by the
string part to that value.

Note: the two possible unary operations are listed in the Summary Sheets.

Call box category: value, action

Sample image: Appearance: Has a first inner box followed by decorative
parentheses in between which can appear additional inner
boxes.

Creation: Press c in any
context.

Purpose: Initiates the process of calling a specified
method box.

Parts: Has one or more
inner boxes.

Execution behavior: The first inner box executes to de-
termine what method box is being called. A copy of that
method box is made and inserted into the stack box at
the beginning. Then the inner boxes of the call box are
executed, producing values for each which are copied into
the data boxes inside the inputs box of the copy of the
method box. Then the instructions box of that method
box copy is executed, while this call box waits. When the
method is finished executing, it may or may not return a
value to become the value of this call box, at which time
execution of the call box is finally complete.

Note: whether the call box is an action or a value depends on whether the
method box it is calling returns a value.

jBoxes Reference Guide Page 18

August 14, 2021

Grow box category: action

Sample image: Appearance: Has a string part followed by an inner box
with a decorative arrow indicating data flow.

Creation: Press g in a
context where an action is
expected.

Purpose: Increases or decreases a specified integer value
by 1.

Parts: Has a string part
and a fixed inner box.

Execution behavior: The inner box is executed to deter-
mine a data box, and then the value in that data box is
increased by one or decreased by one, respectively, if the
string part is ++ or −−.

Return box category: action

Sample image: Appearance: Has an inner box with a decorative arrow
pointing to the right and then upward.

Creation: Press r in a
context where an action is
expected.

Purpose: Causes execution of the method box in which
it appears to complete and sends a value to the output
box of the method.

Parts: One fixed inner
box.

Execution behavior: The inner box executes, producing a
value unless it is an empty box. The value, if there is one,
is put in the output box for the method this box occurs
inside. Then the method execution is complete.

Note: an empty box is allowed here, even though a value is expected, to allow for
the return box to simply terminate execution of its method.

Int, float, char, boolean, and string box category: value

Sample image: Appearance: Each of these five has a string part followed
by a decoration consisting of the first letter of the type,
in uppercase, such as “I” for the integer literal box, in a
context where a value is expected.

Creation: Press the up-
percase letter for the de-
sired type, such as I for
the int literal box.

Purpose: Allows a literal value of any of the five primi-
tive types to be specified in a value context.

Parts: One string part. Execution behavior: Each of these five very similar kinds
of boxes executes by simply producing a copy of its string
part as its value.

jBoxes Reference Guide Page 19

August 14, 2021

New operation box category: value

Sample image: Appearance: Has a decorative image of two offset rectan-
gles indicating copying of a box, followed by a string part
and two inner boxes.

Creation: Press n in a
context where a value is
expected.

Purpose: Creates a new instance of a class or one or two
dimensional array object in the heap.

Parts: Has a string part
and two fixed inner boxes.

Execution behavior: If both inner boxes are empty
boxes, then the string part must be the name of a class
and the new operation box executes by making a copy of
the instance data box for that class, assigning it a refer-
ence number as its name in its upper left corner, putting
the name of the class in the upper right corner, and in-
serting the resulting box in the heap box.

If the first inner box is not empty and the second is, then
a one-dimensional array is created and inserted into the
heap box, with a reference number in its upper left cor-
ner. The string part of the new operation box is put in
the upper right corner of the array box in the heap, in-
dicating that each component box in the array is a data
box that can hold that type of data.

If both inner boxes are not empty, then a two-dimensional
array is created in similar fashion.

Whether the new operation box creates a single instance
of a class, a one-dimensional array, or a two-dimensional
array, its value string becomes the reference number of
the box that was created and inserted in the heap box.

Member box category: value

Sample image: Appearance: Has an inner box followed by a decorate
dot followed by a string part.

Creation: Press . in a
context where a value is
expected.

Purpose: Provides access to an individual data box or
method box in a class box.

Parts: Has a fixed inner
box and a string part.

Execution behavior: The inner box executes to deter-
mine either the name of a class box or the reference num-
ber of an instance of some class. Then, the string part is
used to determine the data box or method box within the
instance or class that is desired.

jBoxes Reference Guide Page 20

August 14, 2021

Array box category: value

Sample image: Appearance: Has a fixed inner box followed by a second
inner box enclosed in decorative left and right brackets.

Creation: Press [in a
context where a value is
expected.

Purpose: Provides access to a component of a one-
dimensional array.

Parts: Has two fixed in-
ner boxes.

Execution behavior: The first inner box executes to de-
termine the reference number of the array in the heap
box. Then the second inner box executes to determine
an int value specifying which component of the array is
referred to.

Array 2D box category: value

Sample image: Appearance: Has a fixed inner box followed by second
and third inner boxes enclosed in decorative left and right
brackets and separated by a decorative comma.

Creation: Press , in a
context where a value is
expected.

Purpose: Provides access to a component of a two-
dimensional array.

Parts: Has three fixed
inner boxes.

Execution behavior: The first inner box executes to de-
termine the reference number of the array in the heap
box. Then the second and third inner boxes execute to
determine int values specifying, respectively, the row and
column of the component of the array that is referred to.

jBoxes Reference Guide Page 21

August 14, 2021

Port box category: container

Sample image: Appearance: Looks just like a data box, but occurs in-
side the ports box (all four port boxes shown to the left).

Creation: Fixed inner box
for ports box.

Purpose: Holds incoming and outgoing symbols for get-
ting and sending from and to disk files.

Parts: Has three string
parts.

Execution behavior: Doesn’t execute, but shows results
of various system method calls as follows. The upper
right corner string shows --> to indicate that the port
has been opened for output, and shows <-- to indicate
that the port has been opened for input. The lower string
part shows the current buffer of symbols that are either
being prepared to be sent to a disk file or have been ob-
tained in a bunch from a disk file.

Overview of Java-Like Code

The Java-like instructions that can be written in a java box are very similar to the syntax
and semantics of Java, as summarized below, but differ from Java in some ways, as detailed
below.

First, the java-like code that can be written in a java box is restricted to the expression
subset of Java (actually, other kinds of statements are provided, but the jBoxes philosophy
says that the branch box and loop boxes should be used instead).

More specifically, a java box that is in a context where an action is expected can contain a
sequence of one or more statements, each terminated by a semi-colon, where each statement
is either an assignment statement, a method call, an incremental statement, or a return
statement.

A java box that is in a context where a value is expected can contain just a single expression.

An assignment statement has an expression that specifies a data box, followed by an
assignment operator which is = or one of the arithmetic operators preceding =, followed
by an expression. It translates in the obvious way to an assignment box.

A method call is a special kind of expression, consisting of a method name followed by
zero or more argument expressions separated by commas and enclosed in parentheses.

An incremental statement is either ++ or −− followed by an expression that specifies a
data box. It translates in the obvious way to a grow box.

jBoxes Reference Guide Page 22

August 14, 2021

A return statement consists of the word return followed by an expression. It translates
in the obvious way to a return box.

An expression consists of anything that can be formed by combining binary and unary
operators, parentheses, method calls, names of data boxes, names of one-dimensional arrays
followed by expressions enclosed in brackets, names of two-dimensional arrays followed by
two expressions, each enclosed in brackets, names of classes or data box names followed
by a period followed by the name of a data box or method box in some class, and literal
values. The rules for all of this are the same as for Java.

Note in particular that the five types of literal values in jBoxes correspond to the same
literal values in Java.

In addition to the fact that not all parts of the Java language can or should be used in a
java box, the main difference is that jBoxes uses system method calls, whereas Java uses
a very elaborate system of predefined classes.

Also, the string type in jBoxes is a primitive data type, whereas in Java it is written as
String and is simply a special, commonly used class.

Translation of Java-Like Code

When a java box is about to be executed for the first time, or when translation is requested
manually by pressing ctrl t , jBoxes translates the Java-like code into a corresponding box
diagram, which is put into the java box as its single inner box.

If there is a syntax error in the code written in the java box, then an error message will
be displayed. After hitting enter to dismiss that error message, you can hit the down
arrow to move the focus into the java box and onto the symbol where that syntax error
was encountered.

You can see, by changing aspects, exactly what box diagram is created from the java code
you have written. It is also useful to change aspects during execution so that instead of
executing as a single box, you can see the step-by-step execution of the simpler boxes that
the java box translated into.

jBoxes Reference Guide Page 23

